Introduction to NEGF-DFT ==================== This section provides an overview of the Non-Equilibrium Green's Function (NEGF) method combined with Density Functional Theory (DFT) for quantum transport calculations. Historical Context ---------------- The gauNEGF package builds upon the foundational work of ANT.Gaussian [Palacios2002]_, which pioneered the implementation of NEGF-DFT calculations using Gaussian basis sets. This approach has proven particularly effective for molecular electronics and nanoscale transport calculations. Core Functionality ---------------- The gauNEGF package provides: * Energy-independent and energy-dependent NEGF calculations [Damle2002]_ * Multiple contact models (Bethe lattice [Jacob2011]_, 1D chain) * Transmission and current calculations * Spin-dependent transport [Zollner2020]_ * Temperature and voltage effects Mathematical Framework ------------------- Key Equations ----------- The central quantities in NEGF-DFT are: 1. **Green's Functions** .. math:: :label: eq_retarded_gf G^r(E) = [(E+i\eta)S - F - \Sigma(E)]^{-1} where: * :math:`G^r(E)` is the retarded Green's function * :math:`E` is the energy * :math:`\eta` is a small broadening parameter * :math:`S` is the overlap matrix * :math:`F` is the Fock matrix * :math:`\Sigma(E)` is the self-energy The lesser Green's function is given by: .. math:: :label: eq_lesser_gf G^\lt(E) = G^r(E) [\Gamma_L f(E-\mu_L) + \Gamma_R f(E-\mu_R)] G^{r\dagger}(E) where: * :math:`G^\lt(E)` is the lesser Green's function * :math:`\Gamma_{L,R}` are the broadening matrices for left and right contacts * :math:`f(E)` is the Fermi-Dirac distribution * :math:`\mu_{L,R}` are the chemical potentials of the contacts 2. **Self-Energies** .. math:: \Sigma(E) = \sum_i \tau_i g_{s,i}(E) \tau_i^\dagger where: * :math:`\tau_i` is the coupling matrix to contact i * :math:`g_{s,i}(E)` is the surface Green's function of contact i * The sum runs over all contacts 3. **Density Matrix** .. math:: \rho = -\frac{1}{2\pi} \int_{-\infty}^{\infty} G^\lt(E) dE This gives the electron density used in the self-consistent cycle. Contact Models and Testing ---------------------- The package includes several contact models: 1. **Bethe Lattice** (`surfGBethe.py`) * Ideal for metallic contacts * Energy-dependent self-energy * Realistic density of states 2. **1D Chain** (`surfG1D.py`) * Perfect for molecular wires * Periodic boundary conditions * Band structure effects 3. **Constant Self-Energy** (`surfGTester.py`) * Performance benchmarking * Adding Temperature dependence * Future development: Energy-dependent decoherence Next Steps -------- Continue to :doc:`negf_dft` for details on the self-consistent procedure. References ---------- .. [Palacios2002] Palacios, J. J., Pérez-Jiménez, A. J., Louis, E., SanFabián, E., & Vergés, J. A. (2002). First-principles approach to electrical transport in atomic-scale nanostructures. *Physical Review B*, 66(3), 035322. https://doi.org/10.1103/PhysRevB.66.035322 .. [Damle2002] Damle, P., Ghosh, A. W., & Datta, S. (2002). First-principles analysis of molecular conduction using quantum chemistry software. *Chemical Physics*, 281(2-3), 171-187. https://doi.org/10.1016/S0301-0104(02)00496-2 .. [Jacob2011] Jacob, D., & Palacios, J. J. (2011). Critical comparison of electrode models in density functional theory based quantum transport calculations. *The Journal of Chemical Physics*, 134(4), 044118. https://doi.org/10.1063/1.3526044 .. [Zollner2020] Zöllner, M. S., Varela, S., Medina, E., Mujica, V., & Herrmann, C. (2020). Insight into the Origin of Chiral-Induced Spin Selectivity from a Symmetry Analysis of Electronic Transmission. *Journal of Chemical Theory and Computation*, 16(5), 2914-2929. https://doi.org/10.1021/acs.jctc.9b01078